检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《新余学院学报》2014年第4期31-33,共3页Journal of Xinyu University
基 金:井冈山大学博士科研启动项目(自然科学)
摘 要:极限理论的诞生使无穷小理论得以严密化。在数学学习与教学中,兼顾数学思想方法的直观性与严密性的学习模式有助于对数学概念、方法的掌握和理解。对无穷小的直观理解可以启迪学生思考,而无穷小理论的严密化可以验证这些思路,进而,学生可以对这类问题有一个完整的知识框架。通过研究无穷小的直观性与严密性在数学学习中的应用,可为这种学习模式提供一种思路。Limit theory (namely language) laid the foundation of the infinitesimal theory. However, before the founding of the theory, the intuitive understanding and cognition of infinitesimal has brought fruitful results for natural science. In mathematics learning and teaching, the learning model combining both intuitive understanding and unassailable logics can make for the mastery and understanding of mathematical concepts and methods. On the one hand, the intuitive thinking for the infinitesimal can enlighten students, on the other hand, the thinking can be tested by demonstration. In this paper, the application of intuition and logics of the infinitesimal in mathematics learning is studied. Some examples are given to illustrate this learning model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49