检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何承源[1]
机构地区:[1]成都师范高等专科学校数学系,四川彭州611930
出 处:《成都师专学报》2000年第4期1-3,共3页Journal of Chengdu Teachers College
摘 要:实反对称矩阵是欧氏空间理论中一类重要的矩阵,在结构力学中有广泛的应用。矩阵的定性在矩阵理论中占有特殊的重要位置。但一般是对称矩阵而言讨论矩阵的定性问题,不过近年来好多文献已就一般矩阵来讨论,如文献[1、2]。本文就实反对称矩阵A加以讨论,当m=2k(k为自然数,下同)时,所得结果显示A^m一定正定(半正定、负定、半负定)以及一些充要条件。为了证明结论方便,先引入一些引理。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.37