实反对称矩阵的定性  

作  者:何承源[1] 

机构地区:[1]成都师范高等专科学校数学系,四川彭州611930

出  处:《成都师专学报》2000年第4期1-3,共3页Journal of Chengdu Teachers College

摘  要:实反对称矩阵是欧氏空间理论中一类重要的矩阵,在结构力学中有广泛的应用。矩阵的定性在矩阵理论中占有特殊的重要位置。但一般是对称矩阵而言讨论矩阵的定性问题,不过近年来好多文献已就一般矩阵来讨论,如文献[1、2]。本文就实反对称矩阵A加以讨论,当m=2k(k为自然数,下同)时,所得结果显示A^m一定正定(半正定、负定、半负定)以及一些充要条件。为了证明结论方便,先引入一些引理。

关 键 词:实反对称矩阵 定性问题 欧氏空间理论 正定矩阵 负定矩阵 非奇异矩阵 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象