一种求解多体系统微分-代数方程的拉格朗日乘子方法  被引量:8

A Lagrange Multiply Method to Solve Multibody Dynamic DAES

在线阅读下载全文

作  者:原亮明[1] 王成国[1] 刘金朝[2] 梁国平[3] 

机构地区:[1]铁道部科学研究院机辆所,北京100081 [2]北京大学地球物理系,北京100871 [3]中国科学院数学所,北京100086

出  处:《中国铁道科学》2001年第2期51-54,共4页China Railway Science

基  金:铁道部科学研究院科技发展基金项目 !(GL98YG0 3 )

摘  要:本文给出了一种求解多体系统动力学微分 代数混合方程组 (DAES)的拉格朗日乘子方法。该法将时间按照Newmark差分格式进行离散化 ,位移约束方程 (完整约束 )按照泰勒级数展开 ,与动力学方程及速度约束方程 (非完整约束 )组合进行迭代求解。求解中位移约束的满足保证了速度、加速度约束的自动满足 ,从而无须进行违约修正。由于该方法对约束方程没有特殊要求 ,而且无须进行违约修正 ,从而保证了该方法对于一般多体系统动力学微分 代数方程求解的稳定性和适用性。本文求解了多体系统动力学中的一个七杆机构标准考题[1] ,与文献 [1]中的结果及ADAMS/ 10 1的计算结果比较表明 。Alagrange multiply method to solve the multibody dynamic differential algebraic equations is introduced in the paper.The time spectrum is discreted with the Newmark difference scheme.The displacement constraint equations (holonomic constraints) are expanded according to the Taylor progression and resolved iteratly along with the dynamic equations and velocity constraint equations (nonholonomic constraints).The diaplacement constraint equations are satisfied in the calculation.The velocity and acceleration constraints are satisfied automatically.The correction of constraints is unessential.The constaint need no specifical requirements,and need no correction.It make sure that the method is reliable and suitable to solve the common multibody dynamic differential algebraic equations.

关 键 词:多体系统 动力学 微分-代数方程 拉格朗日乘子方法 Newmark差分格式 隐式迭代 解法 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象