两步定常线性迭代法的收敛区域及最优参数选取  

ON CONVERGENCE REGIONS AND OPTIMAL PARAMETERS FOR LINEAR SECOND-DEGREE STATIONARY ITERATIVE METHODS

在线阅读下载全文

作  者:张玉海[1] 朱本仁[1] 

机构地区:[1]山东大学数学与系统科学学院,济南250100

出  处:《计算数学》2001年第2期239-245,共7页Mathematica Numerica Sinica

基  金:山东大学青年科学基金资助项目

摘  要:In this paper we concern the convergence regions and the optimal parameters for linear second-degree stationary iterative methods applied to complex linear system with the help of the generalized Louts-Hurwitz’s theorem. We show that the Chebyshev iteration is asymptotically equivalent to a linear second-degree stationary iteration. Finally some applications to CSOR and CMSOR are presented.In this paper we concern the convergence regions and the optimal parameters for linear second-degree stationary iterative methods applied to complex linear system with the help of the generalized Louts-Hurwitz's theorem. We show that the Chebyshev iteration is asymptotically equivalent to a linear second-degree stationary iteration. Finally some applications to CSOR and CMSOR are presented.

关 键 词:线性系统 迭代方法 收敛条件 收敛区域 最优参数 两步定常线性迭代法 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象