拟常曲率流形中保持曲率的无穷小变换  

在线阅读下载全文

作  者:李中林[1] 

机构地区:[1]杭州大学

出  处:《数学杂志》1991年第4期422-424,共3页Journal of Mathematics

摘  要:<正> 1 如所知,在一个 Riemann 流形中,若由′σ~α=σ~α+v~α(σ)dt (1)确定的无穷小变换满足(?)(v)a_(λμ)=2(?)a_(λμ) (2)式中 a_λ是度量张量,(?)是某纯量函数,(?)(v)是关于无穷小变换 v 的李导数,则(1)称为无穷小共形变换,而向量场 v 称为共形 Killing 向量场。如果(?)=const,则称 v 为无穷小位似变换.特别,当(?)=0时,(1)成为无穷小等距变换.在这个情形下,(2)化为 Kil-

关 键 词:拟常曲率流形 无穷小变换 黎曼流形 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象