检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢凡[1] 陈思忠[1] 刘畅[1] 李满红 赵玉壮[1]
机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]总装车船军代局驻北京地区军事代表室,北京100021
出 处:《振动与冲击》2014年第13期111-116,共6页Journal of Vibration and Shock
基 金:国家自然科学基金(51205021)
摘 要:基于车辆悬架系统模型设计了Kalman滤波器,由测量的车身和车轮加速度信号估计振动速度。分析了过程噪声协方差不准确对速度估计效果的影响,然后讨论了基于预测滤波器的自适应Kalman滤波器。仿真结果表明:Kalman滤波器能够实时准确估计车辆振动速度;预设过程噪声协方差值不准确对车身速度估计影响较大,甚至可能使滤波器失效;自适应Kalman器能够修正过程噪声协方差不准确引起的估计误差,获得准确的车辆振动速度。Based on the vehicle suspension system model,a Kalman filter was designed to estimate the vibration velocity by measuring the sprung mass accelerations and unsprung mass accelerations.The influence of the covariance matrix of process noise on vibration velocity estimation was analyzed.Then an adaptive Kalman filter based on predictive filter was discussed.The simulation results show that the designed Kalman filter can accurately estimate the vehicle vibration velocity in real time.The inaccuracy of process noise covariance matrix has larger influence on body velocity estimation,or even makes the filter fail.The adaptive Kalman filter can compensate the estimation error caused by the unknown process noise covariance and obtain accurate vehicle vibration velocity.
分 类 号:U461.4[机械工程—车辆工程] U463.3[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117