检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学的实践与认识》2014年第17期301-305,共5页Mathematics in Practice and Theory
基 金:国家自然科学基金(61072145);北京市优秀人才项目(2013D005007000003)
摘 要:考虑到耗散效应和地形外力,Rossby波的振幅可由受迫耗散Boussinesq方程来描述.当包含这两项时,模型比较复杂,不具有Painleve性质.通过将模型双线性化,双线性方法是一个可寻找孤波解和B(a|¨)cklund变换的方法.通过截断的Painleve展开式,得到了将方程双线性化的合适的因变量变换.然后得到了受迫耗散Boussinesq方程的单孤波解和B(a|¨)cklund变换.Considering the dissipation effect and topographic forcing, the Rossby waves amplitude can be modeled by a forced dissipative Boussinesq equation. Including both terms, the modeling equation is complicated and doesn't possess the Painleve property. The bilinear method is an approach for seeking soliton solntions and Backlund transformation by bilinearizing the investigated equation. Through the truncated Painleve expansion, the suitable dependent; variable transformation for the forced dissipative Boussinesq equation is found to bilinearize the equation. And then, the one-solitary wave solution and Backlund transformation for the equation are obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222