例谈椭圆与直线的相切问题——2014年浙江省数学高考理科第21题赏析  被引量:1

在线阅读下载全文

作  者:夏霖[1] 

机构地区:[1]杭州第十四中学

出  处:《中学教研(数学版)》2014年第10期35-38,共4页

摘  要:直线与圆锥曲线的综合问题是高中解析几何的一个重点内容,在历年高考中都是区分题的载体,比如2014年浙江省数学高考理科第21题.据了解,这个满分15分的解析几何题,全省平均分5分左右.2014年浙江省数学高考理科第21题如下:例1如图1,设椭圆C:x2/a2+y2/b2=1(其中a〉b〉0),动直线2与椭圆C只有1个公共点P,且点P在第一象限.(1)已知直线f的斜率为k,用0,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离最大值为a-b.看到此题,笔者的第一感觉是这个题目很常规、很普通,主要考查了直线与椭圆的位置关系、点到直线的距离等基础知识,以及对分式的处理、基本不等式的应用等综合能力.考生经历了3年的高中数学学习,特别是高三的复习,应该具备了应对此类问题的能力.但从考生反映及阅卷情况来看,这个题目的完成情况不那么理想,值得推敲.这里笔者将自己的一些体会记录下来,与大家分享.

关 键 词:高考理科 数学学习 动直线 浙江省 椭圆 相切问题 解析几何题 赏析 

分 类 号:G634.75[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象