检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《苏州市职业大学学报》2014年第3期49-52,共4页Journal of Suzhou Vocational University
基 金:苏州市职业大学青年基金资助项目(2010SZDQ12)
摘 要:考虑二阶常系数线性微分方程的降阶法.首先,写出二阶齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解.利用降阶法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值.Depression of order for two order linear differential equation with constant coefficients is considered.First of all,the characteristic equation of linear differential equation with constant coefficients is written,and two characteristic roots are obtained,and then the differential equation is multiplied by the integral factor and operatied with derivative,the two order linear differential equation with constant coefficients is changed into the first-order differential form,and finally the first-order differential form is integrated.The two order linear differential equation becomes the linear differential equation of first order,solving first-order linear differential equations,and special or general solution of the differential equations can be obtained.The method is simple,convenient and very useful in practice.
关 键 词:二阶常系数线性微分方程 降阶法 特征根 一阶微分形式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.181.138