随机平面弹性问题的协调有限元分析  

CONFORMING FINITE ELEMENT ANALYSIS FOR STOCHASTIC PLANE ELASTICITY PROBLEMS

在线阅读下载全文

作  者:许小静[1] 范文文[1] 谢小平[1] 

机构地区:[1]四川大学数学学院,成都610064

出  处:《高等学校计算数学学报》2014年第3期207-221,共15页Numerical Mathematics A Journal of Chinese Universities

基  金:国家自然科学基金(11171239);四川大学优秀青年学者基金(2011SCU04B28)

摘  要:This paper considers the numerical solution of plane elasticity equations with stochastic Young's modulus and stochastic loads.The stochastic fields are approximated by Karhunen-Loeve expansion and Wiener polynomial chaos expansion along sample paths,and in space continuous Lagrangian finite elements axe used.Error estimates are derived.Numerical experiments are done to verify the theoretical results.This paper considers the numerical solution of plane elasticity equa- tions with stochastic Young's modulus and stochastic loads. The stochastic fields are approximated by Karhunen-Lofive expansion and Wiener polynomial chaos ex- pansion along sample paths, and in space continuous Lagrangian finite elements are used. Error estimates are derived. Numerical experiments are done to verify the theoretical results

关 键 词:平面弹性问题 随机性 有限元分析 MONTECARLO 统计方法 性能参数 微分方程 样本函数 

分 类 号:O242.21[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象