基于主成分分析法分析面絮与面条品质的关系  被引量:5

The relationship of dough pieces and the quality of noodle based on principal component analysis

在线阅读下载全文

作  者:荆鹏[1] 郑学玲[1] 杨力会 刘翀[1] 李明菲[1] 何慧慧[1] 

机构地区:[1]河南工业大学粮油食品学院,河南郑州450001

出  处:《粮食与油脂》2014年第10期21-24,共4页Cereals & Oils

基  金:国家自然科学基金资助项目(31271816);教育部新世纪优秀人才(NCET–11–0940);河南省小麦产业技术体系建设专项资金资助(S2010–01–G06);河南省科技创新团队(13IRTSTHN008)联合资助

摘  要:该试验以13种小麦粉为原料,将面絮分成7种不同的粒度,使用主成分分析法将7种面絮的含量转变成一个综合数值,探讨面絮分布与面条品质的关系,研究建立使用面絮评价面条的方法。研究结果表明:提取两个主成分,累计方差贡献达到92.42%;主成分分析模型结果与感官评价的色泽、表观状态、适口性、韧性评分都呈现显著负相关,相关系数分别为–0.572、–0.627、–0.671、–0.613;与感官评价总分呈极显著负相关,相关系数r=–0.723。得出面絮粒径(d〈0.336、0.336-0.75、0.75-1.5 mm)含量高有利于提高面条品质,面絮粒径(1.5-2、2-3、3-4、d〉4 mm)的含量高不利于提高面条品质;主成分分析模型对于使用面絮评价面条品质有很好的效果,可以作为一种新的评价方法。Thirteen kinds of wheat were selected to sieve the dough pieces to 7 kinds of particle size. Principal component analysis was used to transform the content of 7 kinds of dough pieces into a numerical. The relationship between the content of particle size and the quality of noodle was discussed, and a new evaluation method of noodles quality was researched to build. The results showed that 2 main compositions were extracted by principal component analysis, and accumulative variance contribution was 92.42%. The principal component analysis evaluation model had significantly negative correlation with colour, the apparent state, palatability and toughness, and the correlation coefficient was -0.572, -0.627, -0.671, -0.613 respectively. The principal component analysis evaluation model had highly significant negative correlation with sensory evaluation, the correlation coefficient was r=-0.723. The high content of dough pieces (d〈0.336,0.336-0.75,0.75,-1.5 mm ) can improve the quality of noodle, but the high content of dough pieces ( 1.5-2-2-3,3-4 d〉4 mm ) is not conducive to the quality of noodle. The principal component analysis evaluation model can be used to as a new evaluation method, because it is effective.

关 键 词:主成分分析 面絮 面条 品质 评价 

分 类 号:TS213.24[轻工技术与工程—粮食、油脂及植物蛋白工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象