含临界指数的一类p-Laplacian奇异拟线性椭圆方程组正基态解的存在性  

The Existence of Positive Ground State Solutions for a Singular Quasilinear Elliptic Systems Involving Critical Exponents

在线阅读下载全文

作  者:张文丽[1] 

机构地区:[1]长治学院数学系,山西长治046011

出  处:《数学的实践与认识》2014年第21期286-295,共10页Mathematics in Practice and Theory

基  金:山西省高校科技研究开发项目(20111129;2013158)

摘  要:研究了一类含Sobolev临界指数的p-Laplacian奇异拟线性椭圆方程组,利用变分方法,结合Nehari流形和集中紧性原理证明对应的能量泛函满足局部(PS)条件,得到了这一方程组正基态解的存在性.In the paper,a singular quasilinear elliptic systems involving Sobolev critical exponents are studied.By using the variational method, together with Nehari manifold and concentration compactness principle, the existence of a positive ground state solution was proved for the systems by proving that the energy functional corresponding to the systems satisfies the (PS) condition.

关 键 词:基态解 奇异拟线性椭圆方程组 NEHARI流形 集中紧性原理 SOBOLEV临界指数 

分 类 号:O175.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象