检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金继东[1]
出 处:《中国科学:数学》2014年第11期1165-1184,共20页Scientia Sinica:Mathematica
摘 要:本文研究对角占优矩阵奇异-非奇异的充分必要条件.基于Taussky定理,本文得出,可约对角占优矩阵的奇异性由其独立Frobenius块的奇异性决定,从而将这一问题化为不可约对角占优矩阵的奇异-非奇异性问题;运用Taussky定理研究奇异不可约对角占优矩阵的相似性和酉相似性,获得这类矩阵元素辐角间的关系;并与Taussky定理给出的这类矩阵元素模之间的关系结合在一起,研究不可约对角占优矩阵奇异的充分必要条件;最后给出不可约对角占优矩阵奇异-非奇异性的判定方法.The necessary and sufficient conditions that a diagonally dominant matrix is singular or nonsingular are examined in this article. According to Taussky Theorem we find that the singularity of a reducible diagonally dominant matrix is determined by the singularity of its independent Frobenius blocks. Thus, whether a reducible diagonally dominant matrix is singular or not can be transformed into the problem of whether its Frobenius blocks, which are irreducible diagonally dominant matrices, are singular or nonsingular. According to Taussky Theorem we study the similarity and unitary similarity of the singular irreducible diagonally dominant matrices. Furthermore we obtain some relationship of arguments between the elements of this type of matrices. Incorporated with an existing relationship of modulus between the elements of this type of matrices given by Taussky, we study the necessary and sufficient conditions for singularity of this type of matrices. Finally we give the criteria for the singularity or non-singularity of the irreducible diagonally dominant matrices.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.65