检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵亮[1]
机构地区:[1]重庆邮电大学计算机科学与技术学院
出 处:《计算机应用与软件》2014年第12期233-236,共4页Computer Applications and Software
摘 要:针对现有支持向量机多类分类算法在分类精度上的不足,提出一种改进的支持向量机决策树多类分类算法。为了最大限度地减少误差积累的影响,该算法利用投影向量的思想作为衡量类分离性的标准,由此构建非平衡决策树,并且在决策树节点处对正负样本选取不同的惩罚因子来处理不平衡数据集的影响,最后引入KNN算法与SVM共同识别数据集。通过在手写体数字识别数据集上的仿真实验,分析比较各种方法,表明该方法能有效提高分类精度。In light of the deficiency of existing SVM multi-class classification algorithm in classification accuracy, we propose an improved SVM decision tree multi-class classification algorithm.In order to minimise the impact of the error accumulation to greatest extent, the algorithm uses the idea of vector projection as the standard to measure class separation, thus constructs an unbalanced decision tree.Furthermore, it selects different punishment factors from positive and negative samples at the nodes of decision tree to counteract the impact from unbalanced data sets.At last, it introduces KNN to co-recognise the data sets with SVM.Analysing and comparing diffident methods by the simulation experiment on handwritten digit recognition data sets, it is shown that this method can effectively improve the classification accuracy.
关 键 词:支持向量机 多类分类 决策树 投影向量 惩罚因子 KNN
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.227.24