检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学数学学院,太原030024 [2]太原师范学院工程科学计算山西省高等学校重点实验室,太原030012
出 处:《工程数学学报》2015年第1期29-38,共10页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(11371275;11071184);山西省自然科学基金(2010011006;2012011015-6)~~
摘 要:Triangle Splitting迭代方法是求解大型稀疏非Hermitian正定线性代数方程组的一种有效迭代算法.为了有效求解大型稀疏且Jacobi矩阵为非Hermitian正定的非线性代数方程组,本文将Triangle Splitting迭代方法作为不精确Newton方法的内迭代求解器,构造了不精确Newton-Triangle Splitting迭代方法.在适当的约束条件下,给出了该方法的两类局部收敛性定理.通过数值实验结果验证了该方法的可行性和有效性,并说明了该方法在计算时间和迭代次数方面比Newton-BTSS迭代方法更有优势.The Triangle Splitting iteration method is an effective iteration method for solving large-scale sparse non-Hermitian positive definite system of linear algebraic equations. By mak-ing use of the Triangle Splitting iteration method on non-Hermitian positive definite matrices as the inner solver of the inexact Newton method, we establish a class of inexact Newton-Triangle Splitting iteration methods for solving the large-scale sparse system of nonlinear algebraic equa-tions with positive definite Jacobian matrices in the paper. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions. The numerical results are given to examine their feasibility and effectiveness. The numerical im-plementations also show that the Newton-Triangle Splitting methods have advantages over Newton-BTSS methods with less computation time and iteration steps.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.207.221