一类非线性代数方程组的Newton-Triangle Splitting迭代法  被引量:3

On Newton-Triangle Splitting Methods for the Systems of Nonlinear Algebraic Equations

在线阅读下载全文

作  者:胡纪洋 王川龙[2] 温瑞萍[2] 

机构地区:[1]太原理工大学数学学院,太原030024 [2]太原师范学院工程科学计算山西省高等学校重点实验室,太原030012

出  处:《工程数学学报》2015年第1期29-38,共10页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(11371275;11071184);山西省自然科学基金(2010011006;2012011015-6)~~

摘  要:Triangle Splitting迭代方法是求解大型稀疏非Hermitian正定线性代数方程组的一种有效迭代算法.为了有效求解大型稀疏且Jacobi矩阵为非Hermitian正定的非线性代数方程组,本文将Triangle Splitting迭代方法作为不精确Newton方法的内迭代求解器,构造了不精确Newton-Triangle Splitting迭代方法.在适当的约束条件下,给出了该方法的两类局部收敛性定理.通过数值实验结果验证了该方法的可行性和有效性,并说明了该方法在计算时间和迭代次数方面比Newton-BTSS迭代方法更有优势.The Triangle Splitting iteration method is an effective iteration method for solving large-scale sparse non-Hermitian positive definite system of linear algebraic equations. By mak-ing use of the Triangle Splitting iteration method on non-Hermitian positive definite matrices as the inner solver of the inexact Newton method, we establish a class of inexact Newton-Triangle Splitting iteration methods for solving the large-scale sparse system of nonlinear algebraic equa-tions with positive definite Jacobian matrices in the paper. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions. The numerical results are given to examine their feasibility and effectiveness. The numerical im-plementations also show that the Newton-Triangle Splitting methods have advantages over Newton-BTSS methods with less computation time and iteration steps.

关 键 词:TRIANGLE Splitting迭代方法 非线性代数方程组 不精确Newton方法 局部收敛性 

分 类 号:O241.7[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象