半序度量空间中混合g-单调映射的四元重合点定理及其应用  被引量:2

Quadruple Coincidence Point Theorems for Mixed g-Monotone Mappings in Partially Ordered Metric Spaces and Their Applications

在线阅读下载全文

作  者:徐文清[1] 朱传喜[1] 吴照奇[1] 

机构地区:[1]南昌大学数学系,南昌330031

出  处:《应用数学和力学》2015年第3期332-342,共11页Applied Mathematics and Mechanics

基  金:国家自然科学基金(11361042;11326099;11071108;11461045);江西省自然科学基金(20132BAB201001;20142BAB211016;2010GZS0147);江西省教育厅青年基金(GJJ13012)~~

摘  要:在半序度量空间中,建立了关于映射对F:X4→X和g:X→X的α-可容许性和相容性的概念.在此基础上,利用迭代方法,研究了完备半序度量空间中在α-ψ-压缩条件下满足混合g-单调性质的α-可容许相容映射对的四元重合点的存在唯一性,获得了一些新的结果.最后,给出了两个例子作为主要结果的应用.结果推广和改进了近期相关文献中的不动点定理和重合点定理.The concepts of α-admissible mappings and compatible mappings for a pair of mappings F: X^4→X and g: X→X in partially ordered metric spaces were constructed. Based on this,with the iterative method,existence and uniqueness of the quadruple coincidence points for the α-admissible and compatible mappings satisfying the mixed g-monotone properties under the α-ψ-contractive conditions in the partially ordered complete metric spaces were studied,and some new theorems were established. Finally,2 examples were presented as applications of the main theorems. The results showthat the work generalizes and improves several fixed point theorems and coincidence point theorems in the recent corresponding literatures.

关 键 词:半序度量空间 四元重合点 α-可容许映射 相容映射 混合g-单调性质 

分 类 号:O177.91[理学—数学] O211.3[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象