检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学电子信息工程学院,安徽合肥230039
出 处:《安徽大学学报(自然科学版)》2015年第1期32-36,共5页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61172127);高等学校博士学科点科研基金资助项目(20113401110006);安徽省高校优秀青年人才基金资助项目(2012SQRL0172D);安徽省自然科学基金资助项目(1208085QF104)
摘 要:提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法.首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果.实验结果验证了该算法的有效性.This paper proposed an algorithm of gait recognition using double-layer convolutional neural networks(D-CNN) and plantar pressure image. Firstly,the preprocessing of the evaluated images from the plantar pressure test system was implemented.Secondly,convolution features were learned from single and double layer of convolutional neural network model.Finally,convolution features were used to train the SVM classifiers and obtain the classification results.The experimental results demonstrated the effectiveness of the proposed method.
关 键 词:卷积神经网络 足底压力图像 数据采集系统 深度学习 步态识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3