巧用均值定理求最值  

在线阅读下载全文

作  者:欧湘亿[1] 

机构地区:[1]北京师范大学附属实验中学

出  处:《中学生数学(高中版)》2015年第6期22-23,共2页Mathematics

摘  要:两个正数的均值定理是高中数学的必修内容,在不等式证明和代数式求最值中经常用到,因此要求同学们熟练掌握.首先,两个正数的均值定理是指:如果a、b∈(0,+∞),那么a+b/2≥ab^(1/2),当且仅当a=b时等号成立.其内容通常可概括为:两个正实数的算术平均值((a+b)/2)不小于它们的几何平均值(ab^(1/2)),其次,由均值定理可得:两个正数的积为常数时,当它们相等时和取得最小值;两个正数的和为常数时,当它们相等时积取得最大值.下面举例说明如何应用均值定理求代数式的最值(最大值或最小值).

关 键 词:不等式证明 当且仅当 正实数 不小于 最值问题 必修内容 解不等式 多元函数 线性规划问题 数值域 

分 类 号:G633.6[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象