修正非线性Schrdinger方程的变号解  

Sign-changing solutions for modified nonlinear Schrodinger equation

在线阅读下载全文

作  者:刘嘉荃[1] 刘祥清[2] 王志强[3,4] 

机构地区:[1]北京大学数学科学学院,北京100871 [2]云南师范大学数学学院,昆明650500 [3]南开大学陈省身数学所,天津300071 [4]Department of Mathematics and Statistics,Utah State University

出  处:《中国科学:数学》2015年第8期1319-1336,共18页Scientia Sinica:Mathematica

基  金:国家自然科学基金(批准号:11171171;11271331;11361077和11271201);联大青年学者培养资助项目

摘  要:本文考虑下列修正非线性Schrodinger方程:{△u+1/2△u2-V(x)+λ|u|p+2 u=0 x∈R N u(x)→0, x→∞此方程出现在数学物理的一些模型中,数学上也有很多讨论.形式上方程有变分结构,但是很难找到合适的工作空间使得相应的泛函同时具有光滑性和满足紧性条件.本文引入p-Laplace项扰动,扰动问题的解作为原问题的近似解,并得到适当的估计,从而转向极限后得到原问题的解.本文证明方程有无穷多变号解满足积分约束∫R N|u|p dx=1,这时方程中常数λ作为Lagrange乘子出现.In this paper, we consider the following modified nonlinear Schrodinger equation: {△u+1/2△u2-V(x)+λ|u|p+2 u=0 x∈R N u(x)→0, x→∞ This type of equations have been involved in models of mathematical physics, and mathematical work has been done extensively in recent years. The problem has a formal variational structure, but it is difficult to find a suitable space in which the variational functional possesses both smoothness and compactness properties. We introduce a p-Laplacian perturbation approach, obtain solutions of the perturbed problems as approximate solutions of the original problem, and original problem. ∫R N|u|p dx=1, where establish suitable estimates for these solutions. Then we pass limits to get solutions of the prove the existence of infinitely many sign-changing solutions with the integral constraint λ appears as a Lagrangian multiplier

关 键 词:修正非线性 SCHRODINGER方程 积分约束 变号解 扰动方法 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象