径向拉伸面上磁流体边界层流方程的有限元数值解  

Galerkin Finite Element Numerical Solutions for the Hydromagnetic Boundary Layer Flow due to a Radially Stretching Surface

在线阅读下载全文

作  者:胡敏[1] 

机构地区:[1]攀枝花学院数学与计算机学院,四川攀枝花617000

出  处:《西昌学院学报(自然科学版)》2015年第3期8-11,14,共5页Journal of Xichang University(Natural Science Edition)

基  金:四川省自然科学基金项目(项目编号:15ZB0419);攀枝花市自然科学基金项目(项目编号:2014CY-G-22);攀枝花学院项目(项目编号:2014YB40)

摘  要:研究流经径向拉伸面上的磁流体引起的稳定的二维边界层流的剪切力,利用一个等价变换将磁流体边界层流控制方程转化成与之等价的奇异积分方程,再利用Galerkin有限元方法将其转化成非线性方程组,最后利用Newton迭代法求解该非线性方程组的数值解,从而获得参数M取不同数值时该问题中流体剪切力的相应数值结果,并将该数值结果与前人的结果作比较。结果显示,该数值结果与前人结论基本一致,这说明Galerkin有限元方法也是一种解决磁流体边界层流的好方法。The shear stress of the steady two-dimensional boundary layer flow of a hydromagnetic flow due to a radially stretching surface is investigated. The boundary layer equations governing the flow are transformed into a singular equation by using suitable equivalent transformations. The equation is then turned to nonlinear equations by using Galerkin finite element method. At last, the numerical solutions for the nonlinear equations are estimated through Newton iterative method. It is obtained the shear stress of this fluid corresponding to the parameter M different values. Moreover, the results are compared with previous conclusions through table. It' s shown that the numerical results and previous solution is consistent. This means that the Galerkin finite element method is a good method to solve the hydromagnetic boundary layer flow.

关 键 词:径向拉伸面 磁流体边界层流 GALERKIN有限元法 NEWTON迭代法 数值解 

分 类 号:O357.3[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象