检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军陆军军官学院,合肥230031
出 处:《应用数学和力学》2015年第10期1107-1116,共10页Applied Mathematics and Mechanics
基 金:国家自然科学基金(11202106);安徽省自然科学基金(1408085MA06)~~
摘 要:充分考虑人口统计效应、疾病的潜伏期与传播规律的复杂性,研究了一类具有非线性发生率的时滞SIRS传染病模型的动力学行为.通过分析对应的线性化近似系统的特征方程,证明了无病平衡点的局部稳定性.利用Lyapunov-La Salle不变集原理,当基本再生数R0<1时,证明了无病平衡点是全局渐近稳定的;当R0>1时,得到了地方病平衡点全局渐近稳定的充分条件.所得结论可为人们有效预防和控制传染病传播提供一定的理论依据.In view of the demographic effects, the latent period and the complexity of disease spread, the dynamic behavior of a class of delayed SIRS epidemic models with nonlinear inci- dence rates was investigated. The characteristic equation of the corresponding linearized ap- proximation system was analyzed to prove the local stability of the disease-free equilibrium. By means of the Lyapunov-LaSalle invariant set principle, it was proved that the disease-free equi- librium was globally asymptotically stable when the basic reproduction number was less than 1 ; and the sufficient conditions were obtained for the global asymptotic stability of the endemic e- quilibrium when the basic reproduction number was greater than 1. Consequently, the conclu- sions provide a theoretical reference for the effective prevention and control of the spread of communicable diseases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219