检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学数学与计算科学学院,广西桂林541004 [2]贺州学院数学系,广西贺州542800
出 处:《郑州大学学报(理学版)》2015年第3期43-48,54,共7页Journal of Zhengzhou University:Natural Science Edition
基 金:国家自然科学基金资助项目;编号11261013;广西高校科研项目;编号KY2015ZD043
摘 要:研究一类具有积分时滞的SIRS传染病动力学模型在脉冲免疫接种条件下的动力学行为.运用离散动力系统的频闪映射,获得一个"无病"周期解,证明该"无病"周期解是渐近稳定的.当模型的参数在适当条件下,该"无病"周期解是全局吸引的.运用脉冲时滞泛函微分方程理论获得带时滞系统持久性的充分条件,也得到该模型的全局吸引性条件.An SIRS epidemic disease model with pulse vaccination and integral delays was considered,and dynamics behaiors of the model under pulse vaccination were analyzed. By use of the discrete dynamical system determined by the stroboscopic map,an "infection-free"periodic solution was obtained and it iwas shown that the‘infection-free'periodic solution was asymptotic stability. Then,it was proved that when some parameters of the model were in appropriate condictions,the ‘infection-free'periodic sollution was globally attractive. Futher,with the theory on delay functional and impulsive differential equation,sufficient condiction with time delay for permanence of the system was given. At the same time,the condition of the global attractivity of the model was obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.189