检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:傅惠民[1] 肖强[1] 娄泰山[1] 肖梦丽[1]
机构地区:[1]北京航空航天大学小样本技术研究中心,北京100191
出 处:《航空动力学报》2015年第10期2318-2322,共5页Journal of Aerospace Power
基 金:国家重点基础研究发展计划(2012CB720000)
摘 要:基于秩滤波原理,提出一种非线性非高斯秩滤波方法,给出其递推过程.目前常用的非线性滤波方法有无迹Kalman滤波和粒子滤波,无迹Kalman滤波只适用于高斯分布的情况,粒子滤波方法却存在粒子退化及重采样引起的粒子贫化问题.而非线性非高斯秩滤波方法不仅适用于常见的多元t分布、多元极值分布等非高斯分布的非线性滤波,并且计算简单、工作量小,便于工程应用.从仿真算例可以看到,该方法的滤波精度与无迹Kalman滤波和粒子滤波方法相比提高了500%以上.A nonlinear and non Guassian rank filter (RF) method based on the principle of rank filter was presented. Furthermore, its filter recursive process was also given. Un scented Kalman filter (UKF) only for Gaussian distribution and particle filter (PF) for non- Gaussian distribution were the two common nonlinear filter methods, but PF had the prob- lems of particle degeneracy, particle impoverishment caused by resampling and complicated calculation. Compared with the two methods, the proposed RF is suitable for not only Gaussian distribution but also non-Gaussian distributions such as multivariate t distributions and extreme value distributions, and RF is simple to calculate and easy to apply in engineer ing. Moreover, it has low amount of calculation. From the simulation comparisons of RF, UKF and PF in the example, the filtering accuracy of RF increased at least 500%.
关 键 词:秩滤波 无迹Kalman滤波 粒子滤波 KALMAN滤波 非线性滤波 非高斯滤波
分 类 号:V448[航空宇航科学与技术—飞行器设计] O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175