检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:喻金平[1] 张勇[1] 廖列法[1] 梅宏标[1]
机构地区:[1]江西理工大学信息工程学院,江西赣州341000
出 处:《微电子学与计算机》2016年第1期65-71,共7页Microelectronics & Computer
基 金:国家自然科学基金项目(71462018);江西省教育厅自然科学基金项目(DJJ12346)
摘 要:针对传统协同过滤推荐算法稀疏性、冷启动、推荐质量不高等缺陷,提出一种基于混合蛙跳模糊聚类的协同过滤推荐算法.该算法先对原始评分矩阵用户和项目进行联合聚类,利用联合聚类结果对评分矩阵进行填充,再对混合蛙跳算法进行改进,利用改进后的算法快速地全局寻优能力得到项目最近邻居集合,最后通过计算预测评分生成推荐结果.仿真结果表明,该算法有效缓解对评分数据稀疏性的不良影响,同时在推荐精度上有明显改善.In order to overcome the disadvantages of the traditional collaborative filtering recommendation algorithm,such as sparsity、cold start and low recommend quality,collaborative filtering recommendation based on shuffled frog leaping fuzzy co-clustering algorithm was proposed.First,co-clustering algorithm is used to simultaneously obtain user and item neighborhoods for the original score matrix,and then the results of co-clustering is used on rating matrix.Improve the shuffled frog leaping fuzzy,and the improved-shuffled frog leaping algorithm is used based on its fast global optimization ability to get the nearest neighbor set.Lastly,the final rating prediction is obtained.The experimental result show that filtering recommendation based on shuffled frog leaping fuzzy co-clustering algorithm will become more accurate,which can effectively relieve the impact of sparse data and improve the quality of recommendation.
关 键 词:推荐系统 协同过滤 联合聚类 数据填充 混合蛙跳
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145