检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中北大学计算机与控制工程学院,山西太原030051
出 处:《计算机工程与设计》2016年第1期169-173,共5页Computer Engineering and Design
基 金:总装预研基金项目(9140A17020113BQ04226)
摘 要:针对三维重建领域中,不同视角下点云的多视定位和配准效率问题,提出一种基于法向量改进的ICP算法。根据点云法向量间夹角特征选出关键点,计算关键点的曲率,通过主曲率特征获取初始对应点集,用高斯曲率和点间距离双重约束查找精确匹配点对,引入平衡因子的概念,给出适用范围,在不同的点云分布下,达到最优匹配,通过四元组法计算最优刚体变换。实验结果表明,相比传统ICP算法,改进后的算法将误差降低至0.05%,配准效率提高至70%以上,点云配准效率明显提升。For the problem of point cloud visual orientation from different perspectives and registration efficiency in the three-dimensional reconstruction field,an improved ICP algorithm based on normal vector was proposed.Key points were selected according to the angle between the normal vectors of the point cloud.The main curvature of key points was computed to get the initial match points,and the dual constraints of Gaussian curvature and distance between points were used to select exact match points.The concepts of balance factor were introduced and the scope was given,the best match points then were selected in different point clouds.Quad method was used to calculate the optimal rigid transformation.Experimental results indicate that comparing with traditional ICP algorithm,the improved method shortens the registration error to 0.05% and raises the registration efficiency to over 70%.It is obviously that the registration efficiency is ascendant.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30