简化平方根容积卡尔曼滤波的INS/GPS紧组合算法  被引量:1

INS/GPS Tightly Integrated Algorithm Based on Reduced Square-Root Cubature Kalman Filter

在线阅读下载全文

作  者:沈飞[1] 郝顺义[1] 吴训忠[1] 郭创[1] 杨彬[1] 

机构地区:[1]空军工程大学航空航天工程学院,西安710038

出  处:《航天控制》2016年第1期15-19,共5页Aerospace Control

基  金:国家973计划资助(6132180403-1)

摘  要:针对INS/GPS紧组合导航系统非线性模型解算的实时性问题,提出了一种用简化平方根容积卡尔曼滤波算法(RSCKF)提高紧组合导航系统运算速度的方法,它是在时间更新环节将平方根容积卡尔曼滤波(SCKF)简化,简化后直接用状态转移矩阵求取状态一步预测和预测协方差矩阵,避免了原算法中采用求容积点近似计算的复杂过程。仿真实验将RSCKF算法与SCKF滤波算法、扩展卡尔曼滤波算法(EKF)的结果对比。结果表明,RSCKF,SCKF两种算法的估计精度要明显高于EKF算法,而且在保证估计精度相当的情况下,RSCKF算法可大大降低系统运算量。By focusing on the problem of the real time of nonlinear model calculation, the reduced square root cubature Kalman filter(RSCKF)/s proposed to use for improving the operating rate of IN S/GPS tightly integrated navigation system. This reduced arithmetic simplifies the square root cubature Kalman filter (SCKF) in time update step, and the state-transition matrix is directly used for calculating the one-step prediction matrix of state and covariance by avoiding the complex approximate calculation process of calculating cubature. During the simulation experiments, the RSCKF results are compared with SCKF and EKF results and show that the RSCKF and SCKF perform well than EKF. The RSCKF algorithm performs nearly the same as the SCKF by precision and can effectively reduce the amount of calculation.

关 键 词:INS/GPS组合导航 紧组合 RSCKF 非线性模型 

分 类 号:V249.3[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象