检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学数学与计量经济学院,长沙410082
出 处:《数值计算与计算机应用》2016年第1期11-24,共14页Journal on Numerical Methods and Computer Applications
摘 要:本文研究了在Hankel—循环矩阵和Hankel—反循环矩阵的约束下矩阵方程组AX=B,XC=D的最小二乘解问题.结合最优化理论和循环矩阵的性质,将其转化为简单的线性方程Qy=b的求解问题,得到了通解的表达式.进一步,证得系数矩阵Q是一个与所求矩阵X相关联的循环矩阵,从而找到了解唯一的充分必要条件并给出了解的表达式.此外,借助于矩阵的广义1—范数,给出了有唯一解的判定条件.最后,给出了具体的算法和算例.The least-squares problems of the matrix equations AX = B and XC = D for several special circulant matrices are discussed in this paper. Combining the optimization theory and the properties of circulant matrices, the least-squares problem can be transformed into a simple problem of linear equation Qy = b. Therefore, the explicit representations of the general solution can be derived. Moreover, the coefficient matrix Q of the linear equation related to the matrix X with constraint conditions is a circulant matrix. Thus, the explicit representations of the general and unique solution are derived. Besides, the determination conditions of the unique solution are obtained by the generalized 1 norm. Finally, the algorithm and example are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.132.103