关于不定方程x^2-6y^2=1与y^2-Dz^2=4的公解  被引量:15

On the system of Diophantine equations x^2-6y^2=1 and y^2-Dz^2=4

在线阅读下载全文

作  者:杜先存[1] 李玉龙[1] 

机构地区:[1]红河学院教师教育学院,云南蒙自661199

出  处:《安徽大学学报(自然科学版)》2015年第6期19-22,共4页Journal of Anhui University(Natural Science Edition)

基  金:国家自然科学基金资助项目(11071194);云南省教育厅科研基金资助项目(2014Y462);喀什师范学院校级课题基金资助项目((14)2513);红河学院校级课题基金资助项目(XJ15Y22)

摘  要:利用递归序列、Pell方程的解的性质、Maple小程序等,证明了D=2~n(n∈Z+)时,不定方程x^2-6y^2=1与y^2-Dz^2=4:(i)n=1时,有整数解(x,y,z)=(±485,±198,±140),(±5,±2,0);(ii)n=3时,有整数解(x,y,z)=(±485,±198,±70),(±5,±2,0);(iii)n=5时,有整数解(x,y,z)=(±485,±198,±35),(±5,±2,0);(iv)n≠1,3,5时,只有平凡解(x,y,z)=(±5,±2,0).By using recursive sequence , some properties of the Solutions to Pell equation and Maple formality, the following conclusions were proved: If D=2~n(n∈Z+), then(i) the system of Diophantine equations x2 -6y2 = 1 and y2 -Dz2 = 4 has integer solutions (x,y, z) = (±485,±198,±140),(±5,±2,0) where n = 1; (ii) the system of Diophantine equations x2 -6y2 =1 and y2 -Dz2 = 4 has integer solutions (x,y,z) -= (±5,±2,0) ,(±485,±198,±70)where n = 3 ; (iii) the system of Diophantine equations x2 - 6y2 = 1 and y2 - Dz2 = 4 has integer solutions (x,y,z) = (±5, ±2, 0), (±485,±198, ±35) wheren = 5; (iv) the system of Diophantine equations x2 - 6y2 = 1 and y2- Dz2 = 4 has only trivial solution (x, y,z) = (±5, ±2, 0) where n ≠:1,3,5.

关 键 词:PELL方程 递归序列 基本解 整数解 公解 奇素数 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象