检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]厦门大学数学科学学院,厦门361005 [2]Department of Mathematics,University of Wisconsin-Milwaukee
出 处:《数学学报(中文版)》2016年第3期317-334,共18页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(11371295;11471041);福建省自然科学基金项目(2015J01025)
摘 要:假定T_σ是关于乘子σ的双线性Fourier乘子算子,其中σ满足如下Sobolev正则条件:对某个s∈(n,2n],有sup_(κ∈Z)‖σ_k‖W^s(R^(2m))<∞.对于p_1,p_2,p∈(1,∞)且满足1/p=1/p_1+1/p_2和ω=(ω_1,ω_2)∈A_(p/t)(R^(2n)),建立了T_σ及其与函数b=(b_1,b_2)∈(BMO(R^n))~2生成的交换子T_(σ,b)由L^(p_1,λ)(ω_1)×L^(p_2,λ)(ω_2)到L^(p,λ)(v_w)的有界性;同时,在b_1,b_2∈CMO(R^n)(C_c~∞(R^n)在BMO拓扑下的闭包)的条件下,证明交换子T_(σ,b)是L^(p_1,λ)(ω_1)×L^(p_2,λ)(ω_2)到L^(p,λ)(v_w)的紧算子.为了得到主要结果,我们先后建立了几个双(次)线性极大函数在加多权Morrey空间上的有界性以及该空间中准紧集的判定.Let Ta be the bilinear Fourier multiplier operator associated with multiplier a satisfying the Sobolev regularity that supk∈z||σk||wa(R2n)〈∞ for some s∈(n,2n]. We give the boundedness of Tσ and the commutators Tσ,b generated by Tσ and b = (bl, b2)∈ (BMO(Rn)}2, as well as the compactness of, the BMO-closure of Cc (Rn)) from to Lp for appropriate indices Pl, P2, P c (1,0e) (1/p = 1/pl + l/p2) and multiple weights ω = (ω1,ω2) ∈ Ap/t(R2n). The main ingredient is to establish the multiple weighted estimates for the variants of certain multi(sub)linear maximal operators on the weighted Morrey spaces, and a sufficient condition for a subset in the weighted Morrey spaces to be a strongly pre- compact set, which are in themselves interesting.
关 键 词:双线性Fourier乘子 交换子 双(次)线性极大算子 紧性 加权Morrey空间
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.221