双线性Fourier乘子交换子的有界性与紧性  

Boundedness and Compactness for Commutators of Bilinear Fourier Multipliers

在线阅读下载全文

作  者:毛素珍[1] 孙丽静 伍火熊[1] 

机构地区:[1]厦门大学数学科学学院,厦门361005 [2]Department of Mathematics,University of Wisconsin-Milwaukee

出  处:《数学学报(中文版)》2016年第3期317-334,共18页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(11371295;11471041);福建省自然科学基金项目(2015J01025)

摘  要:假定T_σ是关于乘子σ的双线性Fourier乘子算子,其中σ满足如下Sobolev正则条件:对某个s∈(n,2n],有sup_(κ∈Z)‖σ_k‖W^s(R^(2m))<∞.对于p_1,p_2,p∈(1,∞)且满足1/p=1/p_1+1/p_2和ω=(ω_1,ω_2)∈A_(p/t)(R^(2n)),建立了T_σ及其与函数b=(b_1,b_2)∈(BMO(R^n))~2生成的交换子T_(σ,b)由L^(p_1,λ)(ω_1)×L^(p_2,λ)(ω_2)到L^(p,λ)(v_w)的有界性;同时,在b_1,b_2∈CMO(R^n)(C_c~∞(R^n)在BMO拓扑下的闭包)的条件下,证明交换子T_(σ,b)是L^(p_1,λ)(ω_1)×L^(p_2,λ)(ω_2)到L^(p,λ)(v_w)的紧算子.为了得到主要结果,我们先后建立了几个双(次)线性极大函数在加多权Morrey空间上的有界性以及该空间中准紧集的判定.Let Ta be the bilinear Fourier multiplier operator associated with multiplier a satisfying the Sobolev regularity that supk∈z||σk||wa(R2n)〈∞ for some s∈(n,2n]. We give the boundedness of Tσ and the commutators Tσ,b generated by Tσ and b = (bl, b2)∈ (BMO(Rn)}2, as well as the compactness of, the BMO-closure of Cc (Rn)) from to Lp for appropriate indices Pl, P2, P c (1,0e) (1/p = 1/pl + l/p2) and multiple weights ω = (ω1,ω2) ∈ Ap/t(R2n). The main ingredient is to establish the multiple weighted estimates for the variants of certain multi(sub)linear maximal operators on the weighted Morrey spaces, and a sufficient condition for a subset in the weighted Morrey spaces to be a strongly pre- compact set, which are in themselves interesting.

关 键 词:双线性Fourier乘子 交换子 双(次)线性极大算子 紧性 加权Morrey空间 

分 类 号:O174.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象