基于转子角轨迹簇特征的电力系统暂态稳定评估  被引量:33

Power System Transient Stability Assessment Based on Cluster Features of Rotor Angle Trajectories

在线阅读下载全文

作  者:周艳真 吴俊勇[1] 于之虹[2] 冀鲁豫 严剑峰[2] 郝亮亮[1] 

机构地区:[1]北京交通大学电气工程学院,北京市海淀区100044 [2]中国电力科学研究院,北京市海淀区100192

出  处:《电网技术》2016年第5期1482-1487,共6页Power System Technology

基  金:国家电网公司科技项目资助(XT71-15-001);中央高校基本科研业务费专项资金资助项目(E14JB00120)~~

摘  要:机器学习技术已被广泛应用于暂态稳定分析领域。在基于机器学习的暂稳评估中,如何兼顾输入特征信息量的多少和整体计算效率,一直是需要解决的问题。为此提出一种基于转子角轨迹簇特征、由线性支持向量机(linear support vector machine,LSVM)和决策树(decision tree,DT)构成的组合式暂稳评估方法。首先,构建转子角轨迹簇整体特征的时间序列作为暂稳评估的输入向量,考虑到输入特征的时间维度,先通过LSVM对每个时序特征进行降维映射,再将降维后的结果输入至DT中,形成暂稳预测和稳定程度评估模型,并采用boosting技术进一步提高评估模型的准确性。对新英格兰10机39节点系统进行算例分析验证了方法的有效性,所提出的轨迹簇特征和组合算法具有较高的精度和计算效率,能较准确地指示系统的稳定程度,且对未知运行工况具有一定的泛化能力。Multiple machine learning techniques have been widely used in transient stability analysis.For machine learning based method,balance between input feature number and total calculation efficiency is always a problem need to solve.In this paper,a hybrid classifier combining linear support vector machine(LSVM) and decision tree(DT)was proposed to assess transient stability using rotor angle trajectory cluster features.Firstly,rotor angle cluster features were used as inputs.Considering time dimension of input features,each time series feature was reduced with LSVM.Then the reduced data were put into DT to generate transient stability prediction and stability degree evaluation models.Boosting technique was used to improve accuracy of the evaluation model.Case studies were conducted on New England 10-machine 39-bus system to verify the proposed method.Test results showed that the proposed cluster features and algorithm possesses high accuracy and overall calculation efficiency.The evaluation model could indicate stability degree accurately and was robust to untrained samples.

关 键 词:暂态稳定评估 转子角轨迹 支持向量机 决策树 机器学习 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象