运用跑道平面结构化线特征的固定翼无人机视觉导航算法  被引量:7

Vision-based landing method using structured line features of runway surface for fixed-wing unmanned aerial vehicles

在线阅读下载全文

作  者:周朗明[1] 钟磬[1] 张跃强[1] 雷志辉[1] 张小虎[1] 

机构地区:[1]国防科技大学航天科学与工程学院,湖南长沙410073

出  处:《国防科技大学学报》2016年第3期182-190,共9页Journal of National University of Defense Technology

基  金:第57批中国博士后基金资助项目(2015M572706)

摘  要:针对固定翼无人机在着陆阶段的位姿估计的问题,提出运用跑道平面结构化线特征的无人机视觉导航算法。利用单台固连在无人机上的前视相机对跑道区域进行成像,自动提取结构化线特征。在无人机降落前期利用完整的结构化线特征配置解算出无人机的六自由度位姿参数(偏航角、俯仰角、滚转角、纵向位置、横向位置、高度),并在无人机降落到较低高度时,利用退化的结构化线特征(跑道边缘)解算出无人机的关键位姿参数(偏航角、俯仰角、横向位置、高度)。三维实景仿真实验证明,在距离机场200 m处,无人机的距离参数精度小于0.5 m,角度参数精度小于0.1°。For the estimation problem of pose and attitude of fixed-wing unmanned aerial vehicles in the terminal landing stage,a vision-based landing method using structured line features was proposed. One forward looking camera equipped in the fixed-wing unmanned aerial vehicles was used to capture multiple pictures of the structured line features and these features were extracted automatically. 6 degrees of freedom pose and attitude parameters( pitch angle,yaw angle,roll angle,longitudinal position,lateral position and altitude) were calculated by using geometric constraint of full configuration structured line features in the earlier stage of the landing,the key parameters( pitch angle,yaw angle,lateral position and altitude) were calculated by using degenerate configuration structured line features( only the runway edges) in the final stage of the landing. In the 3D stimulation experiment,the accuracy of distance is less than 0. 5 m,the accuracy of angle is less than 0. 1° when the fixed-wing unmanned aerial vehicle is 200 m distant from the airport.

关 键 词:计算机视觉 固定翼无人机 着陆引导 消影点 位姿估计 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象