检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于金山[1] 吴皓[1] 田国会[1] 薛英花[2] 赵贵祥[1]
机构地区:[1]山东大学控制科学与工程学院,山东济南250061 [2]山东财经大学计算机科学与技术学院,山东济南250014
出 处:《机器人》2016年第4期410-419,共10页Robot
基 金:国家自然科学基金(61573216);山东省重点研发计划(2015GGX103034);山东省自然科学基金(ZR2015FM007)
摘 要:针对室内移动机器人在智能服务任务中难以获得复杂环境语义的问题,通过设计云端语义库,实现基于语义获取框架的机器人语义地图构建,使机器人不仅掌握面向导航的环境几何描述,而且获得了复杂环境下基于丰富语义库的含物品关联归属关系的语义地图,解决了语义地图构建过程中语义信息添加可靠性低、地图更新存在误差及扩展性不足等问题.首先给出了一种语义库构建方案,基于支持向量机实现语义库分类形成子语义库,在子语义库基础上基于网络文本分类来提取关键特征点形成特征模型库,通过语义分类列表整合子语义库实现物品查询.其次,论述了面向智能服务任务的云端语义地图实现,基于多尺度图像分割与视差图分析,设计标注库与归属库描述物品关联归属关系.最后进行了有关语义地图构建及语义库分类效率的仿真实验与结果分析,验证了方法的有效性.In intelligent service task, it is difficult for indoor mobile robots to obtain semantic information of complex environment. A semantic map based on semantic acquisition structure of environment is constructed by designing cloud semantic database. The robot can not only get the geometric description of environment, but also obtain the semantic map which contains objects relationship based on rich semantic database of complex environment. It solves the low reliability of adding semantic information, the error of updating map and the lack of scalability in the process of constructing the semantic map. It begins by presenting a semantic database construction project. Then semantic sub-databases are obtained by classifying the semantic database based on SVM (support vector machine) algorithm. On the base of semantic sub-databases, the feature model database is formed by extracting key feature points based on network text classification. By combining the semantic sub-database with the semantic classification list, the objects can be identified. Secondly, the implementation of cloud semantic map for the intelligent service task is discussed. Based on the multi-scale image segmentation and the analysis of disparity map, annotation database and belonging database are designed to describe the belonging relationship between objects. Finally, the semantic map is constructed and the classification efficiency of semantic database is analyzed in simulation experiments to verify the validity of the method.
关 键 词:智能服务任务 语义地图 支持向量机 多尺度图像分割 视差图
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117