检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学的实践与认识》2016年第17期168-173,共6页Mathematics in Practice and Theory
基 金:国家自然科学基金(61275120)
摘 要:针对葡萄酒物理和化学数据成分冗余,提出了两种葡萄酒分类的算法,分别是主成分分析K均值和主成分分析自组织神经网络算法.这两种算法对葡萄酒的物理化学成分进行了主成分分析,提取了主要的影响因素,将输入维数降低,再利用K均值和自组织神经网络算法分别对葡萄酒进行分类和比较.实验结果表明,PCA-K-means和PCA-SOM都具有较高的准确率,都有一定的使用价值和可操作性,并且PCA-K-means算法优于其它的算法.As the data of physical and chemical components rape winesare Characterized by redundancy,this paper proposes two models based on PCA-K-means and PCAself-organizing Neural networks for the classification of grape wines.First,it analyzes the principal physical and chemical components of grape wines and the major influencing factors in order to reduce input dimensions;second,using K-means and self-organizing neural network algorithm to compare the effect of wine classification.The result indicates that the PCA-K-means model has higher precision than the models PCA-self-organizing Neural networks.
分 类 号:TS262.6[轻工技术与工程—发酵工程] TP183[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117