检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田波[1] 朴在林[1] 郭丹[1] 王慧[1] Tian Bo Piao Zailin Guo Dan Wang Hui(College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110161, China)
机构地区:[1]沈阳农业大学信息与电气工程学院,沈阳110161
出 处:《电测与仪表》2016年第17期12-17,共6页Electrical Measurement & Instrumentation
基 金:十二五国家科技支撑项目(2012BAJ26B00)
摘 要:风功率预测对提高电能质量和电力系统的安全运行具有重要意义。基于时间序列的方法,对内蒙古赤峰地区某风场的风功率数据进行了超短期预测,通过对数据平稳性检验的结果,建立了时间序列的ARMA模型,利用拉格朗日乘子检验的方法,检验ARMA模型具有ARCH效应,并建立适合的ARMA-GARCH模型。结论通过对比ARMA模型,ARMA-ARCH模型和ARMA-GARCH模型的风功率预测精度可知,在解决数据的残差序列异方差函数具有长期相关性时,ARMA-GARCH模型能够有效的提高预测精度。Wind power prediction is very important to improve the power quality and the safe operation of power sys- tem. The ultra short-term prediction of wind power data is carried out in a wind farm in Chifeng of Inner Mongola based on time series analysis, and the ARMA ( Autoregressive Moving Average) model of time series is built through the stationary test of data. Through ARCH effect of the residual of ARMA model by Lagrange Multiplier ( LM ) , the corresponding ARMA-GARCH model is set up. Through the comparison of the wind power prediction by using ARMA model, ARMA-ARCH model and ARMA-GARCH model respectively, ARMA-GARCH model possesses higher accura- cy on the residual sequence of the data with the long term correlation.
关 键 词:时间序列 风电功率 预测 ARMA模型 ARCH模型 GARCH模型
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.103.40