基于蚁群神经网络的LED灯管寿命预测  被引量:4

Life Prediction of LED Lamps Based on Ant Colony Neural Networks

在线阅读下载全文

作  者:刘春军[1] 肖承地[1] 刘卫东[1] 

机构地区:[1]南昌大学机电工程学院,南昌330031

出  处:《半导体光电》2016年第5期649-655,共7页Semiconductor Optoelectronics

基  金:国家自然科学基金项目(71461020);江西省教育厅科学技术研究项目(12717)

摘  要:针对高可靠性、长寿命复杂产品的可靠性评估过程,在加速寿命退化试验数据的基础上,提出了一种基于试验数据驱动的自适应智能方法,并对某型LED灯管的寿命与可靠性进行预测分析。首先,通过指数模型拟合性能退化曲线,推算出各组应力条件下的伪失效寿命值;再将蚁群算法结合BP神经网络等智能算法应用于寿命预测模型的建立,根据试验证明寿命服从对数正态分布,且检验寿命必须满足置信度区间范围内;最后,预测出正常应力条件下LED灯管的工作寿命。结果表明,基于蚁群神经网络预测LED灯管寿命的方法,预测误差较小,收敛速度快,能够满足工程要求。To evaluate the reliability of long life, high reliable and complex products, proposed was an adaptive intelligent method based on the connection of accelerated life test data, and it was used to analyze the life and reliability of LEDs. First, a index model was built to fit the trend of performance degradation, and pseudo failure life was calculated under each stress condition. Then, the ant colony algorithm combined with BP neural network was applied to establish the life predicted model, proving the life obeyes the lognormal distribution, and the test life must meet the range of confidence interval. Finally, the working life of the LED lamp was predicted under the condition of normal stress. The results show that the method for forecasting LED lamps life based on ant colony neural network presents small prediction errors and faster convergence rate, satisfying the engineering requirement.

关 键 词:LED灯管 蚁群算法 BP神经网络 蚁群神经网络 加速模型 

分 类 号:TN383[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象