检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙洪运[1] 杨金顺[2] 李林波[1] 吴兵[1]
机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海201804 [2]青岛理工大学汽车与交通学院,山东青岛266555
出 处:《同济大学学报(自然科学版)》2016年第11期1695-1701,共7页Journal of Tongji University:Natural Science
摘 要:为了提高降雨条件下快速路车速短时预测的准确性,考虑到各影响因素的模糊性以及影响作用非线性变化特点,提出了一个以交通量、占有率和降雨量为输入,以车速为输出的模糊神经网络预测方法.利用上海市快速路的交通流与气象数据确定了最优模型结构,并与自回归积分滑动平均模型、反向传播神经网络模型和支持向量机模型进行对比分析.该方法的预测均方根误差为3.05km·h-1,预测平均误差为3.95%,均优于其他3种方法.A fuzzy neural network system was developed to improve urban expressway short-term speed prediction accuracy on rainy days, taking fuzzy influencing factors such as traffic volume, occupancy and precipitation, as well as their non-linear interaction into account. Based on the traffic flow and weather data of Shanghai, the best model structure was determined and its performance was evaluated against those of the existing autoregressive integrated moving average model, the back propagation neutral network, and the support vector machines model. The results show that the root mean square error and mean absolute percent error of the fuzzy neural network system are 3. 05 km · h^-1 and 3. 95% respectively, which outperform those of the other three prediction models.
分 类 号:U491.2[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.221.53