基于微惯导随机误差时间序列建模的改进组合导航方法  被引量:3

ARMA-based stochastic modeling method for improving the performance of low-cost MIMU/GNSS integration

在线阅读下载全文

作  者:王鼎杰 吕汉峰[1] 吴杰[1] 

机构地区:[1]国防科技大学航天科学与工程学院,湖南长沙410073

出  处:《国防科技大学学报》2016年第6期64-69,共6页Journal of National University of Defense Technology

基  金:国防科技大学研究生创新资助项目(B140103)

摘  要:针对低精度、低成本微机电惯性测量单元随机误差建模效果不理想会极大影响组合导航性能的难题,采用时间序列分析方法建立了微机电惯性测量单元随机误差的自回归滑动平均模型,通过对卡尔曼滤波器的状态变量进行增广,建立系统动力学方程和观测方程,实现对零偏误差的在线估计。实测数据分析验证了该随机误差建模的有效性。实测数据处理结果表明,该方法能够显著提高低成本微惯性解算外推精度,增强微惯性/卫星组合导航可靠性。High noise and complicated errors caused by low-cost MIMU ( micro-electro-mechanical system-based inertial measurement unit, MEMS-based IMU) have caused its stochastic modeling challenge, which may undermine the performance of inertial-based integrated navigation. In order to achieve accurate MEMS-based navigation, a stochastic modeling method called auto-regressive moving-average model for low-cost MEMS- based inertial sensors was proposed on the basis of time series analysis theory. This model was then expanded into the state variables of the conventional Kalman filter to establish the system dynamic equation and observation equation and to estimate the zero-bias online. Field test results indicate that the proposed algorithm can not only realize a highly accurate autonomous navigation for low-cost MIMU, but also provide reliability to the MIMU/GNSS integrated system.

关 键 词:微机电系统 惯性测量单元 随机建模 自回归滑动平均 扩展卡尔曼滤波 

分 类 号:V448.224[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象