检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王廷春[1] 王国栋[1] 张雯[1] 何宁霞 WANG TINGCHUN WANG GUODONG ZHANG WEN HE NINGXIA(College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)
机构地区:[1]南京信息工程大学数学与统计学院信息与计算科学系,南京210044
出 处:《应用数学学报》2017年第1期1-15,共15页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金(No.11571181);‘青蓝工程’资助项目
摘 要:本文致力于提出并分析一个求解耗散Schrdinger方程的线性化紧致差分格式.通过引入—个新的变量来消除耗散项,原方程可化为一个保持总质量和总能量的守恒系统.本文继而对这个守恒系统提出了一个高效的紧致差分格式,并证明该格式在离散意义下保持总质量和总能量守恒.运用不动点定理和标准的能量方法,新格式被证明是唯一可解的.不同于经典的基于数值解先验估计的分析方法,本文引进数学归纳法并结合H^1估计,在对网格比没有任何要求的前提下建立了格式在最大模意义下的最优误差估计.格式的收敛阶在空间和时间两个方向分别为4阶和2阶.数值结果验证了理论分析的正确性,并展示了新格式较已有格式的优越性.This paper aims to design and analyze a linearized compact finite difference scheme for solving a dissipative nonlinear Schrodinger equation. By introducing a transform of variable to eliminate the dissipative term, a new system which preserves the total mass and energy is obtained. Then an efficient compact finite difference scheme is proposed for the new system. Corresponding to the fact that the original problem preserves the total mass and energy, the novel scheme is proved to also preserve the two invariant quantities in the discrete sense. The unique solvability of the numerical scheme is proved by using a fixed point theorem together with the standard energy method. Unlike the classical analysis method based on the a priori estimate of the numerical solution, we here introduce an induction argument together with an H^1 technique in building the optimal error bound. The convergence rate is proved to be of fourth-order in space and second-order in time, respectively. Numerical results are reported to support the theoretical analysis and show that the novel scheme is superior to the existing scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.137.245