非线性方程组的非交替Newton-PHSS迭代法  被引量:7

Non-alternating Newton-PHSS iteration method for systems of nonlinear equations

在线阅读下载全文

作  者:伍渝江[1] 陈亮[1] 

机构地区:[1]兰州大学数学与统计学院,兰州730000

出  处:《应用数学与计算数学学报》2017年第2期153-162,共10页Communication on Applied Mathematics and Computation

基  金:国家自然科学基金资助项目(11471150)

摘  要:大型稀疏非Hermite正定Jacobi矩阵对应的非线性方程组的迭代求解历来受到重视.结合不精确Newton法和非交替PHSS迭代法,提出了迭代求解非线性方程组的NewtonNPHSS方法,给出了迭代法的局部收敛定理,并演算了数值例子,阐明了Newton-NPHSS是有效的迭代法.Much attention has been paid on the iteration solution for large scale and sparse systems of nonlinear equations whose Jacobian matrix is non-Hermitian positive definite during these years. Our goal in this paper is to combine the inexact Newton method with non-alternating preconditioned Hermitian and skew- Hermitian splitting (PHSS) iteration method, and to present a non-alternating Newton-PHSS (Newton-NPHSS) iteration method for solving systems of nonlinear equations. Local convergence theorem of the method is given. Numerical examples are carried out to verify the effectiveness of Newton-NPHSS method.

关 键 词:非线性方程组 不精确NEWTON法 Newton-HSS法 局部收敛 

分 类 号:O241.7[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象