检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学与计算数学学报》2017年第2期153-162,共10页Communication on Applied Mathematics and Computation
基 金:国家自然科学基金资助项目(11471150)
摘 要:大型稀疏非Hermite正定Jacobi矩阵对应的非线性方程组的迭代求解历来受到重视.结合不精确Newton法和非交替PHSS迭代法,提出了迭代求解非线性方程组的NewtonNPHSS方法,给出了迭代法的局部收敛定理,并演算了数值例子,阐明了Newton-NPHSS是有效的迭代法.Much attention has been paid on the iteration solution for large scale and sparse systems of nonlinear equations whose Jacobian matrix is non-Hermitian positive definite during these years. Our goal in this paper is to combine the inexact Newton method with non-alternating preconditioned Hermitian and skew- Hermitian splitting (PHSS) iteration method, and to present a non-alternating Newton-PHSS (Newton-NPHSS) iteration method for solving systems of nonlinear equations. Local convergence theorem of the method is given. Numerical examples are carried out to verify the effectiveness of Newton-NPHSS method.
关 键 词:非线性方程组 不精确NEWTON法 Newton-HSS法 局部收敛
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3