Hardy-Littlewood积分算子范数不等式及其推广  

Hardy-Littlewood Integral Operator Norm Inequalities and its Generalizations

在线阅读下载全文

作  者:匡继昌[1] 

机构地区:[1]湖南师范大学数学与计算机科学学院数学系,湖南长沙410081

出  处:《广东第二师范学院学报》2017年第3期11-25,共15页Journal of Guangdong University of Education

摘  要:著名的Hardy-Littlewood不等式在分析数学及其应用中均起着重要的作用.但要求出该不等式中的最佳常数的值,却是一个困难的问题.为此,笔者在《常用不等式》(第3版)中曾将该问题作为未解决问题中的第109题.在笔者论文"关于Hardy-Littlewood不等式中的最佳常数"的基础上,通过将求最佳常数问题转化为求相应的算子范数等新的分析技巧,得到了HardyLittlewood积分算子的范数不等式.作为它的推广,得到n维向量空间上具有径向核的新的积分算子范数不等式.How to obtain the sharp constant of the Hardy-Littlewood inequality remains unsolved. In this paper, by means of the new analysis technique of the sharp constant factor is changed into the corresponding operator norm, Hardy-Littlewood integral operator norm inequalities are proved. As its generalizations, some new integral operator norm inequalities with radial kernel on n-dimensional vector spaces are established.

关 键 词:HARDY-LITTLEWOOD不等式 最佳常数 积分算子 范数不等式 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象