一类具变时滞的非自治模糊BAM神经网络周期解的全局指数稳定性  被引量:2

Global exponential stability of periodic solutions of a class of non-autonomous fuzzy BAM neural networks with varying-time delay

在线阅读下载全文

作  者:贾秀玲 王继禹 佘连兵[2] 

机构地区:[1]郑州工商学院公共基础部,河南郑州451400 [2]六盘水师范学院数学系,贵州六盘水553004

出  处:《兰州理工大学学报》2017年第3期87-91,共5页Journal of Lanzhou University of Technology

基  金:国家自然科学基金(11361074);河南省教育厅重点科研项目(15A110027);河南省基础与前沿技术项目(142300410384)

摘  要:研究一类在以往文献中很少提及的具变时滞的非自治模糊BAM(bi-directional associative memory)神经网络.通过构造Lyapuonv函数,利用M-矩阵理论以及Yang不等式等分析技巧,给出非自治模糊BAM神经网络周期解的全局指数稳定性的充分条件,这些条件去掉了对激活函数的有界性、单调性和可微性的要求,且在某些情况下更易验证.最后通过一个例子验证了所给结果的有效性.A class of non-autonomous fuzzy BAM(bi-directional associative memory)neural network with varying-time delay,which rarely mentioned in the literatures available,is investigated.By constructing Lyapunov function,applying such analysis skill as M-matrix theory and Young inequality,a sufficient condition is given for the global exponential stability of periodic solutions of a class of non-autonomous fuzzy BAM neural network with varying-time delay,and the requirement of boundedness,monotonieity,and differentiability to the activation functions will be avoided due to this condition,and in some cases,the stability criteria can be easily checked and verified.Finally,one example is given to verify the effectiveness of the result obtained.

关 键 词:模糊BAM神经网络 周期解 M-矩阵 全局指数稳定性 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象