检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]成都信息工程学院数学学院,成都610225 [2]绵阳师范学院数学与物理学院,四川绵阳621000 [3]西南科技大学城市学院,四川绵阳621000
出 处:《四川理工学院学报(自然科学版)》2017年第3期85-88,共4页Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基 金:四川省教育厅基金项目(16ZB0314)
摘 要:利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin^(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z^+,0<α≤1,则级数sum from n=1 to ∞sin^1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)<M,且0<α≤1,则级数sum from n=1 to ∞sin(an)/n^af(n)收敛。同时利用确界定理得到:正项级数sum from n=1 to ∞sinn^(2s)n/n发散,其中s∈Z。并推广:正项级数sum from n=1 to ∞nsin^(2s)(an)/n发散,其中0<a≤π/2,s∈Z。利用数学归纳法获得:正项级数sum from n=1 to ∞ sin^(2s)(ann+b)/n发散,其中s∈Z,(a-2kπ)~2+(b-2lπ)~2>0,k,l∈Z。By the compactness theorem, one sufficient condition for convergence of a bounded sequence {yn} is obtained that ∨ε〉0,■N∈Z+,satisfies as n 〉N,{yn-yn-1|〈εOne theorem for the convergence of any item series is found that if the series an is bounded,and limn→∞a_n=0,then this is convergent. Thus it is obtained that the series
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.202