一种基于聚类分析的自适应步态检测方法  被引量:1

An Adaptive Gait Detection Method Based on Clustering Analysis

在线阅读下载全文

作  者:姜鸣[1] 赵红宇[2] 刘学良[1] 

机构地区:[1]东莞理工学院电子工程和智能化学院,广东东莞523808 [2]大连理工大学控制科学与工程学院,辽宁大连116024

出  处:《郑州大学学报(工学版)》2017年第3期63-67,共5页Journal of Zhengzhou University(Engineering Science)

基  金:国家自然科学基金资助项目(51407031);广东省自然科学基金(2016A030313134);广东省高等学校"创新强校工程"创新项目(2014KQNCX221);东莞市社会科学发展项目(2013108101007)

摘  要:提出一种基于K-中心点聚类算法的自适应步态检测方法,检测不同步态参数及其耦合关系.所提方法在现有检测方法的基础上增加了步态精细划分环节,提高步态检测结果的正确性和有效性.实验结果显示,在较大步态参数空间内,采用所提检测方法可将步数估计的精度从现有方法的46.16%~53.22%提高到76.13%.Gait analysis was one of the most focusd research fields in recent several years, and the gait param- eters attracted increasing interest in clinical medicine, pedestrian navigation and so on. However, the existing gait detection methods had some shortcomings that prevented their successful use to many practical applica- tions, the detection results of which were very sensitive to measurement fluctuations and detection parameters, and thereby characterized by poor robustness. In this paper, the mutual coupling relationship between different parameters was tested, and an adaptive gait detection method based on clustering analysis was proposed, so as to automatically yield the time heuristic threshold. The experimental results demonstrated the correctness and effectiveness of the method, and the gait detection accuracy over a large parameter space could be improved from 46.16% and 53.22% respectively to 76.13%.

关 键 词:步态检测 聚类分析 步行周期划分 自适应参数 惯性测量 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象