检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡发焕[1,2] 刘国平[1] 胡瑢华[1] 董增文[1]
机构地区:[1]南昌大学机电工程学院,南昌330031 [2]江西理工大学机电工程学院,江西赣州341000
出 处:《光子学报》2017年第7期165-172,共8页Acta Photonica Sinica
基 金:国家自然科学基金(No.71361014)资助~~
摘 要:单一特征识别的钨矿石初选准确率低,稳定性差,本文提出结合模糊支持向量机和D-S证据理论相的多特征钨矿石识别方法.对矿石图像预处理后,分别提取矿石的颜色、灰度和纹理等3类视觉特征,对这3类视觉特征进行模糊分类得到各自的信任度,再以这3类信任度为独立证据,采用D-S证据理论对3类证据进行融合,并依据分类判决规则得到最终的识别结果.试验结果表明,通过D-S理论对模糊向量机证据的融合,钨矿石初选的正确识别率达到96%以上,其准确率和稳定性较单一特征均有大幅度提高,满足生产过程中初选工艺的要求.According to the low accuracy and low stability of the single feature-based method for tungsten ore primary selection, a multi-feature fusion based on fuzzy support vector machine and D-S evidence theory was proposed. Firstly, the three types of vision feature that is color, gray and texture were extracted from the ore image after a series of image processing. Their probability function were acquired according to each type of feature utilizing fuzzy support vector machine and the results were used to D-S evidence theory as evidence. Finally, using D-S combination rule of evidence to achieve the decision fusion and giving final recognition result by classification rules. The experimental results show that the accuracy of multi-feature fusion methods is over 96% and it has good performance on accuracy and stability compared to the single feature-based method in tungsten ore primary selection. The accuracy and stability can meet the requirement of production process.
关 键 词:机器视觉 图像处理 D-S证据理论 钨矿石 模糊支持向量机 决策级融合 钨矿石初选 特征提取
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229