一类四阶偏微分方程的对称约化、精确解和守恒律  被引量:5

Symmetry reductions,exact solutions and conservation laws of a class of forth-order partial differential equations

在线阅读下载全文

作  者:张丽香[1] 刘汉泽[1] 辛祥鹏[1] 

机构地区:[1]聊城大学数学科学学院

出  处:《华东师范大学学报(自然科学版)》2017年第6期50-62,共13页Journal of East China Normal University(Natural Science)

基  金:国家自然科学基金(11171041;11505090)

摘  要:利用李群分析研究了一类变系数四阶偏微分方程,求出方程的李点对称,把偏微分方程约化为常微分方程,然后结合(G'/G)展开法及椭圆函数展开法,对约化后的常微分方程求其精确解,从而得到原方程的精确解.进一步,给出这类变系数偏微分方程的守恒律.The partial differential equation with constant coefficients can merely approximately reflect the law of motion of substances. Relatively the partial differential equation with variable coefficients can reflect the complex movement of substances more accurately. Therefore, it is more important to study the partial differential equations with variable coefficients. This paper investigates a class of variable coefficient partial differential equations. By using Lie symmetry analysis, the symmetries of the equations are obtained, Then the partial differential equations are reduced to ordinary differential equations. Moreover, we combine with(G'/G) expansion method and elliptic function expansion, so exact solutions to the original equation are obtained. Furthermore, the conservation laws of this kind of variable coefficient differential equations are given.

关 键 词:变系数方程 李群分析 精确解 守恒律 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象