检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴蓓蓓[1,2] 殷俊锋[1] 金猛[1] WU Bei-Bei;YIN Jun-Feng;JIN Meng(School of Mathematics Science, Tongji University, Shanghai 200092, China;School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China)
机构地区:[1]同济大学数学科学学院,上海200092 [2]上海电力学院数理学院,上海200090
出 处:《四川大学学报(自然科学版)》2017年第6期1153-1158,共6页Journal of Sichuan University(Natural Science Edition)
基 金:国家自然科学基金(11271289)
摘 要:本文研究了Black-Scholes欧式期权定价模型的三次三角B-样条配点法.对BlackScholes方程,该方法的空间离散采用三次三角B-样条配点法,时间离散采用向前有限差分,并引入参数θ来建立混合差分格式.利用稳定性分析的Von Neumann(Fourier)方法,本文证明了该格式在1/2≤θ≤1时是无条件稳定的.数值实验显示,该方法的数值结果优于Crank-Nicolson有限差分法和三次B-样条方法.A cubic trigonometric B-spline collocation method is developed for numerical solution of the Black-Scholes equation governing European option pricing. In this method, the Black-Scholes equation is fully-discretized by using the cubic trigonometric B-spline collocation for spatial discretization and the forward finite difference for the time discretization. As a result,a hybrid difference scheme is obtained by introducing the parameter 0. According to the Von Neumann (Fourier) method, the presented method is proven to be unconditionally stable for 1/2≤θ≤1. A numerical experiment is performed to illustrate the validity and accuracy of the method. It is shown that this method is superior to the Crank-Nicolson finite difference method and cubic B-spline collocation.
关 键 词:期权定价 BLACK-SCHOLES方程 三次三角B-样条 有限差分
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222