检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东省华立技师学院建筑与经济学部,广州511300 [2]卡斯柯信号有限公司平台软件部,上海200071 [3]广州大学松田学院,广州511370 [4]西南石油大学油气藏地质与开发工程国家重点实验室,成都610500
出 处:《大理大学学报》2017年第12期5-11,共7页Journal of Dali University
摘 要:无条件极值的充分条件采用其目标函数的Hesse矩阵作为判别依据,但多元函数条件极值充分条件的判别矩阵却比较复杂。在分析了两种充分条件具有不同判别矩阵的原因的基础上,推导了条件极值的充分条件的判别方法,并采用一阶泰勒展开求解自变量增量间的关系式,得到了高维多约束状态下条件极值充分条件的一种较精确的判别矩阵。有助于理解两种充分条件的关联及差别,提供了一种寻找精确的条件极值的充分条件的判别矩阵的方法。The sufficient conditions for unconditional extreme values are determined according to Hessian matrix, but the sufficient conditions for conditional extreme values are rather complex. Based on an analysis that the identification of the two kinds of sufficient conditions rely on different matrices, we derived a method of locating the sufficient conditions for conditional extreme values. By use of first order Taylor expansion in obtaining the relations among argument increments, a more precise matrix for determining the sufficient condition for conditional extreme values in high dimensions and with multiple constraints has been deduced. This helps a better understanding of the relationships and differences between the two kinds of sufficient conditions, and provides a means of finding a more precise sufficient condition for a conditional extreme value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229