基于粒子群优化BP神经网络的脉象识别方法  被引量:16

Pulse recognition method based on PSO-BP neural network

在线阅读下载全文

作  者:张开生[1] 黄谦 

机构地区:[1]陕西科技大学电气与信息工程学院,陕西西安710021

出  处:《现代电子技术》2018年第3期96-100,106,共6页Modern Electronics Technique

基  金:陕西省科技计划项目(2017GY-063)~~

摘  要:针对传统脉诊存在易受主观因素影响、诊断结果可靠性不高等问题,提出基于粒子群优化BP神经网络的脉象识别方法。粒子群算法中评判粒子好坏的适应度函数采用神经网络的输出误差,以此获得最优粒子的位置向量,并把其值作为BP神经网络的初始权值和阈值。在Matlab中建立基于BP算法、PSO-BP算法和GA-BP算法的三种ANN模型用于脉象信号的识别。实验结果表明,在识别脉象时,优化后的算法降低了传统BP神经网络的输出误差,提高了识别精度,PSO-BP算法明显改善了传统BP神经网络的泛化能力。Since the traditional pulse diagnosis is easily affected by subjective factors,and its result has low reliability,a pulse recognition method based on PSO-BP neural network is put forward.The fitness function judging the particles in PSO algorithm adopts the neural network to output the error,so as to obtain the position vector of the optimal particle.The value of the position vector is taken as the initial weight and threshold of the BP neural network.The ANN model based on BP algorithm,PSO-BP algorithm and GA-BP algorithm was established in Matlab to recognize the pulse signal.The experimental results show that the optimized algorithm can reduce the output error of the traditional BP neural network and improve the recognition accuracy for pulse recognition.The PSO-BP algorithm can improve the generalization ability of the traditional BP neural network significantly.

关 键 词:脉象识别 粒子群算法 输出误差 误差反向传播算法 神经网络 泛化能力 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象