关于两个凸函数乘积的不等式  

Inequalities on Product of Two Convex Functions

在线阅读下载全文

作  者:时统业[1] 朱璟[1] 

机构地区:[1]海军指挥学院信息系,江苏南京211800

出  处:《高等数学研究》2018年第1期20-23,共4页Studies in College Mathematics

摘  要:针对两个正的连续凸函数,利用各自的算术平均值,给出它们乘积的算术平均值的上界.在这两个凸函数成似序时,这个上界比由Hermite-Hadamard不等式得到的上界要小.在这两个凸函数成反序时,这个上界与由Chebyshev不等式得到的上界各有强弱.For two positive continuous convex functions, an upper bound of the arithmetic mean of their product is given by means of their respective arithmetic means. When these two convex functions are in similar order, the upper bound obtained is smaller than that obtained by Hermite-Hadamard inequality. When they are in opposite order, the upper bound obtained may be bigger or smaller than that obtained by Chebyshev inequality.

关 键 词:CHEBYSHEV不等式 HERMITE-HADAMARD不等式 凸函数 似序 反序 积分不等式 

分 类 号:O174.13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象