检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《高等数学研究》2018年第1期20-23,共4页Studies in College Mathematics
摘 要:针对两个正的连续凸函数,利用各自的算术平均值,给出它们乘积的算术平均值的上界.在这两个凸函数成似序时,这个上界比由Hermite-Hadamard不等式得到的上界要小.在这两个凸函数成反序时,这个上界与由Chebyshev不等式得到的上界各有强弱.For two positive continuous convex functions, an upper bound of the arithmetic mean of their product is given by means of their respective arithmetic means. When these two convex functions are in similar order, the upper bound obtained is smaller than that obtained by Hermite-Hadamard inequality. When they are in opposite order, the upper bound obtained may be bigger or smaller than that obtained by Chebyshev inequality.
关 键 词:CHEBYSHEV不等式 HERMITE-HADAMARD不等式 凸函数 似序 反序 积分不等式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171