人工智能对龙井茶等级识别研究  被引量:8

Study on Longjing Tea Classification by Artificial Intelligence

在线阅读下载全文

作  者:虞培力 赵粼[1] 王晞丞 张星海[1] 

机构地区:[1]浙江经贸职业技术学院,浙江杭州310018

出  处:《现代农业科技》2018年第2期260-263,共4页Modern Agricultural Science and Technology

摘  要:应用电子鼻、电子舌技术对6个等级龙井茶进行识别研究。检测数据通过主成分分析(PCA)与判别因子分析(DFA),确定龙井茶等级识别最佳传感器阵列组合。结果表明,以S2-100Hz金电极、S3-1Hz钯电极、S4-1Hz钨电极、S6-100Hz银电极为传感器阵列,建立龙井茶汤智舌模型;以S1、S2、S4、S5、S6为传感器阵列,建立龙井茶汤智鼻模型;以S2、S4、S5、S6为传感器阵列,建立龙井干茶智鼻模型,将智舌、智鼻检测方法结合形成的人工智能识别龙井茶等级的方法具有极高的辨识能力,能够快速有效地判别龙井茶样等级。Six grade Longjing teas wrere identified by electronic nose and electronic tongue technique.The detection data were determined by principal component analysis(PCA)and discriminant factor analysis(DFA), and the best sensor array combination of Longjing tea grade identification was determined.The results showed that the electronic tongue model of Longjing tea soup was established with the sensor array of S2-100Hz gold electrode, S3-1Hz palladium electrode, S4-1Hz tungsten electrode, S6-100Hz silver electrode曰 the electronic nose model of Longjing tea soup wras establishedwith the sensor array ofS1, S2, S4, S 5, S6; the electronic nose model of dry Longjing tea was established with the sensor array of S2, S4, S 5, S6. It could classify Longjing tea quickly and effectively by combining identification of electronic tongue and electronic nose with artificial intelligence.

关 键 词:电子鼻 电子舌 龙井茶 分级 模型 

分 类 号:TS272.7[农业科学—茶叶生产加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象